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Abstract

When demand aggregates both price-sensitive and price-insensitive behav-

iors, uniform pricing becomes a deficient market design that generates negative

surplus during extreme-price events. We develop a price-control mechanism that

efficiently resolves the tradeoff between protecting consumers and limiting rents.

The mechanism implements a dynamic price cap that responds to demand

adjustments and induces truthful supply through incentive payments. In a

quantitative application to the French wholesale electricity market during the

2022–2023 energy crisis, the mechanism would have lowered expected procure-

ment costs by roughly €200 billion, about two-thirds of total projected costs in

this central scenario.

1 Introduction

Markets in which a homogeneous good is traded at a uniform price often aggregate

buyers with heterogeneous abilities to adjust their demand in response to price changes.

Some buyers can flexibly reduce or shift their quantities when prices fluctuate, while

others cannot, either because of technological rigidities, contractual obligations, or

the essential nature of the good. This mixture of elastic and inelastic demands is a

structural feature of many high-stakes markets. When supply is tight, the clearing
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price can rise to extreme levels because aggregate demand reflects the willingness to

pay only of those who are able to adjust.

From a welfare perspective, this creates a fundamental tension. Leaving prices un-

constrained exposes inelastic buyers to shocks, leading to large transfers and inefficient

destruction of surplus, while constraining prices too much eliminates incentives for

efficient allocation on the responsive margin. Because discrimination between demand

types is often infeasible or undesirable, policies such as price control and rationing

cannot be targeted to specific groups. The central design challenge is therefore to

balance protection of inelastic demand with the preservation of efficiency on the

responsive margin.

We start by noting that this problem has, in principle, a simple structure. For any

realized demand state (i.e., demand schedule), there exists a unique price threshold

at which total consumer surplus is zero, aggregating both the inelastic and elastic

components. Under standard regularity conditions, capping the price at this threshold

and rationing total demand to clear the market maximizes total surplus. Crucially,

this threshold depends only on the composition of demand, not on the shape or level

of supply. It can therefore be computed directly whenever the demand schedule is

observable and decomposable into responsive and inelastic components.

This result implies a transparent rule for price control: the optimal price cap

adjusts dynamically with changes in demand composition, tightening when inelastic

demand dominates and relaxing when elastic demand expands. Such a rule cushions

price shocks without suppressing the information contained in prices and preserves

incentives for efficient adjustment.

Our analysis is cast in general terms, taking as primitives demand and supply

schedules as in market exchanges. Electricity markets provide a leading example: our

main quantitative application is to the European energy crisis of 2022-2023, discussed

below. But price caps are also in everyday use in other high-stakes markets, including

short-term money markets. In these markets, a significant share of liquidity demand

is effectively exogenous in the short run—arising from payment obligations, collateral

needs, and reserve requirements—while the remainder adjusts elastically to interest

rates. A central bank enforces the ceiling on the overnight rate by supplying liquidity

elastically. In the short run, this masks the rationing implied by the cap. In the

long run, however, the central bank’s capacity to absorb shocks is limited by balance

sheet, risk, and political constraints. When these constraints bind, rationing reemerges
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through collateral requirements, counterparty access restrictions, or segmentation in

the interbank market.1

This paper makes the following contributions. First, we characterize the welfare-

maximizing price cap in uniform-price markets with elastic and inelastic demand and

provide an algorithm to compute it from observed demand schedules. Second, we

provide a mechanism-design foundation for the price-cap algorithm by developing an

auction mechanism that induces truthful supply behavior. Third, we allow for hetero-

geneity in buyers’ welfare weights and endogenous selection into price responsiveness

and show that the price-cap mechanism remains implementable and optimal. Fourth,

we apply the theory to the European wholesale electricity market during the 2022

energy crisis, focusing on France, and quantify its implications.

Empirical case. We use hourly market outcomes for 2023 to quantify the drivers

of the high contract prices observed in fall 2022. The combination of the EU price-

capping protocol then in place and the sharp reduction in nuclear availability—due to

systemic technological problems emerging in 2022—together account for the escalation

in expected procurement costs, which approached €330 billion for France for 2023

(assuming 70% nuclear availability and €7,000/MWh cap). Applying our price-control

mechanism to the same counterfactual generates time-varying caps that would have

reduced expected procurement costs by about €200 billion, substantially mitigating the

threat to market stability. Under a more adverse 60% availability scenario, expected

procurement costs fall by roughly €475 billion. Notably, while rationing is more

frequent under the optimal policy, the amount rationed is not materially higher than

implied by the prevailing EU protocol. We also compute the incentive payments

required to sustain truthful supply of marginal capacity. Under the optimal price-cap

policy, these payments fall sharply—to only a few euros per MWh—and are fiscally

negligible relative to suppliers’ revenues from sales at market prices.

Related literature. Our work contributes to several strands of the literature.

A first strand concerns price controls and rationing as exogenous institutions. A

1A related logic appears in fiscal policy. In the model of Halac and Yared (2018), fiscal rules
place state-contingent limits on policy instruments to balance flexibility and commitment. This is
conceptually similar to a price cap: the rule protects against extreme realizations while preserving
responsiveness within the allowed range. In both settings, the cap is a mechanism to structure
trade-offs between protection and efficiency.
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classic contribution is Weitzman (1977), showing how rationing can improve allocation

when some buyers cannot afford essential goods (see also Sah, 1987; Wijkander, 1988).

Other studies highlight the distributional and efficiency properties of rationing in

the management of common resources (e.g., Donna and Espin-Sanchez, 2023; Ryan

and Sudarshan, 2022). In contrast to this literature, which typically treats rationing

or price control as exogenous, our result shows that a rationing rule—implemented

together with an optimal price cap—arises endogenously as a welfare-maximizing

policy even in the absence of distributional weights or externalities. This result reflects

the presence of a committed component of demand, which may itself be technologically

or institutionally determined, and contrasts with the large price-theory literature

emphasizing the efficiency losses from rationing (e.g., Bulow and Klemperer, 2012).

The key novelty is that the optimal rationing rule and price cap emerge directly

from demand primitives, without invoking additional policy objectives or institutional

assumptions.

A second strand of the literature concerns price formation and scarcity pricing

in electricity markets. These analyses emphasize that when some consumers can-

not respond to price changes, efficiency requires treating demand types differently:

inelastic consumers should face fixed prices and be rationed when needed, while

elastic consumers should continue to face market prices that guide efficient adjustment

(e.g., Wilson, 1989; Joskow and Tirole, 2006, 2007; Borenstein and Holland, 2005;

Gowrisankaran et al., 2016). In practice, however, electricity wholesale markets clear

all demand, derived from different sources, at a single uniform price and do not

distinguish between demand types at the market-clearing stage. Our planner would

like to follow the explicit discrimination policy but must work with aggregate demand

to infer the demand composition for obtaining the welfare-maximizing price cap.2

A third literature concerns mechanisms that address market power and infor-

mational distortions on the supply side. Within a price-theory framework, efficient

allocations can be implemented by clearing the market n + 1 times based on the

submitted bids. The n counterfactual clearings generate discriminatory unit prices

that effectively transform the setting into a Vickrey auction (Vickrey, 1961) with

VCG payments, as in Montero (2008). This avoids the inefficiencies of pay-as-bid

2The literature on activating consumer price-sensitivity identifies a related but distinct distortion
(Fowlie et al., 2021; Ito et al., 2023). Our mechanism remains optimal even after correcting for
possible behavioral biases in consumer selection into price-sensitivity; we assume no behavioral biases
but only differing private costs of technologies.
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auctions (cf. Ausubel et al., 2014). While multi-unit Vickrey auctions are uncommon

(cf. Hortaçsu and McAdams, 2018), we find that the two instruments—price caps

to buyers and incentive payments to suppliers—jointly solve the trade-off between

protecting consumers and limiting producers’ rents. Their optimal joint use further

makes the design more attractive by reducing the incentive payments required to

sustain truthful supply. In extreme-price events when the cap binds, firms receive no

incentive payments beyond their market revenue; the mechanism thus optimally limits

rents in times of scarcity, in contrast to settings without a cap.

A fourth strand studies mechanism design under distributional objectives. Recent

contributions have shown how welfare weights shape optimal market designs (e.g.,

Dworczak et al., 2021; Akbarpour et al., 2024; Pai and Strack, 2022; Tokarski et al.,

2023). We allow for heterogeneity in buyers’ value of money and for endogenous

selection into price responsiveness. In this setting, welfare weights shift the opti-

mal price cap downward when the planner places higher value on inelastic buyers,

while responsiveness externalities raise the cap. Despite these additional forces, the

mechanism remains tractable and implements the constrained-efficient allocation.

2 Optimal Price Control in a Competitive Market

2.1 Environment

Demand and Supply. The policymaker observes the aggregate demand and supply

schedules prior to market clearing. It is useful to think of these schedules as bids

submitted to an exchange where the policy is implemented. LetDx(p) denote aggregate

demand in demand state x, differentiable and strictly decreasing in price p, and let

Sy(p) denote aggregate supply in supply state y, differentiable and strictly increasing

in p.3

The joint market state z = (x, y) is drawn from a commonly known joint dis-

tribution. The demand function Dx(p) satisfies decreasing differences in (p, x): a

higher price reduces demand more in a higher-demand state. The supply function

Sy(p) satisfies increasing differences in (p, y): a higher price increases supply more in

a higher-supply state. The model therefore allows for shocks to demand, supply, or

3We use differential methods for the analytical results; the empirical application implements these
objects as step-functions, as observed in the data.
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both.

The policymaker does not need to know the functional dependence of these

schedules on the underlying states x and y; it is sufficient that the realized schedules

are observable as data containing quantities demanded and supplied at each price. We

may think of each market opening as a new draw of z and its corresponding schedules.

The policy described below specifies how outcomes are chosen in each such realization.

The policymaker controls a single instrument, a rationing rule µz ∈ [0,1], that

scales the aggregate demand schedule:

Dz(p) = µzDx(p). (2.1)

Given Dz(p) and Sy(p), the market clears at the equilibrium price pz satisfying

Dz(pz) = Sy(pz).

We assume that this equation defines a unique equilibrium price pz > 0 for every state

z, and that the expected values p = E[pz] and px = E[pz | x] remain bounded for all

admissible choices by the agents.4

Sticky and Non-sticky Demands. Consumers differ in how their individual

demand responds to market prices. A share θ ∈ [0,1] of consumers are responsive,

and the remaining 1− θ are sticky. When responsive, a consumer’s private demand is

dx(p), a strictly decreasing and differentiable function of price p in any demand state

x. When sticky, the consumer does not observe the realized market price but forms

rational expectations px. Sticky demand is fixed at the expected-price level dx(px),

denoted dx for short. Sticky consumers thus understand how their preset demand

varies across states and how it correlates with prices, even though it does not adjust

to the realized price.5

The aggregate demand in any state x can then be written as

Dx(p) = (1− θ) dx + θ dx(p), (2.2)

4We omit the subscript z from expectations when no confusion arises.
5We collapse the indexation of realized demand schedules Dx and price expectations px. More

generally, one can let x determine Dx while forming expectations with respect to an information set
Xx such that x ∈ Xx, so that px = E[pz | Xx]. We suppress this distinction.
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where θ is the share of responsive consumers. The policymaker can identify the two

components, dx and dx(p), from observed aggregate data Dx(p) if information on px

is available—for instance, from contract prices or from expert evaluations linking

expected prices to demand covariates.

Given Dx(p) and px, identification of sticky demand follows from Dx(px) = dx(px),

which pins down dx. The share θ > 0 can be inferred from limp→∞ Dx(p) = (1− θ) dx,

and the responsive demand from

dx(p) =
Dx(p)− (1− θ) dx

θ
.

With this information, the policymaker can evaluate welfare effects of alternative

policies.

To ensure that the welfare evaluations are well defined, we assume that the elasticity

of the responsive demand satisfies σ(dx) > 1 for sufficiently high p in every state x.

This guarantees that the indirect utility from responsive consumption, ux(d), is finite

at d = 0. Normalizing ux(0) = 0, utility can be written as

ux(dx(p)) = p dx(p) +

∫
p′≥p

dx(p
′) dp′.

Understanding how the concept of utility follows from observables, we move on to the

planner’s problem.

2.2 Planner’s Problem

The planner observes the aggregate demand and supply schedules before market

clearing and can influence the market outcome through a rationing rule µz ∈ [0,1]. We

also introduce a per-unit tax or subsidy τz on consumption, an auxiliary instrument

that aids interpretation. Formally, for a given τz, we continue to denote the demand

by Dz(p) = µzDx(p+ τz).

Aggregate utility in state z is given by

Uz = µz

[
(1− θ)ux(dx) + θ ux(dx)

]
, (2.3)

where dx = dx(pz + τz) is the demand of non-sticky consumers. Because rationing

applies uniformly, total utility scales proportionally with µz.
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Aggregate welfare is

Wz = Uz − Cy(Dz), (2.4)

where Cy(Dz) is the total cost of supplying quantity Dz, strictly convex and differen-

tiable.

2.3 Main Characterization

Using dx = [Dz/µz − (1− θ)dx]/θ, substitute into (2.4) to express welfare as a function

of (Dz,µz,τz). Differentiating yields

dWz =
[
u′
x − C ′

y

]
dDz +

[
Uz

µz
− Dz

µz
u′
x

]
dµz, (2.5)

where u′
x is the marginal utility of non -sticky consumers, evaluated at dx(pz + τz),

and C ′
y is the marginal cost of total supply Dz.

Equation (2.5) shows how welfare changes with aggregate demand and rationing.

The planner can vary demand dDz through τz. Trading sets u′
x−C ′

y = τz and it follows

immediately that it is not optimal to distort the choices at the adjusting margin by a

consumption tax or subsidy.

Proposition 2.1 (Optimal Policy). The optimal policy does not use taxes or subsidies,

τz = 0, and regulates the market solely through rationing µz. For every state z, the

optimal pair (p∗z,µ
∗
z) satisfies

pzDz(pz) ≤ Uz ⊥ µz ≤ 1. (2.6)

That is, rationing applies if and only if consumer surplus is zero at the equilibrium

price.

Proof. The first term in (2.5) shows that introducing a tax τz would create a gap

between u′
x and C ′

y, lowering welfare. The first term thus shows that τz = 0. The

market equilibrium adjusts to variations in µz. The second term implies that welfare

increases with µz when Uz

µz
− Dz

µz
u′
x > 0 and decreases otherwise, establishing the

complementarity condition in (2.6).

Condition (2.6) defines a state-contingent price boundary p∗z, implemented as a

price cap. Because both Uz and Dz scale proportionally with µz, the boundary depends
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only on the demand state x, denoted p∗x. Thus, remarkably, the optimal policy implies

that the planner needs only information about demand to derive the price boundary.

When binding, the price cap equates the average utility per unit of consumption,

p∗x =
(1− θ)ux(dx) + θ ux(d

∗
x)

(1− θ) dx + θ d∗x
, (2.7)

where d∗x = dx(p
∗
x). Intuitively, the price p∗x prevents a negative surplus by balancing

the positive consumer surplus from non -sticky consumers and negative surplus from

sticky ones.

Implementation of the Optimal Policy. We can now state the rationing policy in

full:

Proposition 2.2. Assume that the demand and supply schedules, Dx(p) and Sy(p),

are observable. Then:

(i) For each demand state x, the unique optimal price cap p∗x derived from Dx(p)

satisfies (2.7) with d∗x = dx(p
∗
x), and the relevant utility terms are identified from

the observed Dx(p).

(ii) For each x, there exists a unique supply state y∗x such that

Sy∗x(p
∗
x) = (1− θ) dx + θ d∗x.

If and only if y < y∗x, it is optimal to implement a binding price cap at p = p∗x

with demand rationed by

µ∗
z =

Sy(p
∗
x)

Dx(p∗x)
.

The optimal rationing loosens, and the rationing price increases, with the share of

non -sticky consumers:
∂µ∗

z

∂θ
> 0,

∂p∗x
∂θ

> 0.

Proof. The planner observes Dx(p) and can identify the sticky and non -sticky shares

and the corresponding demands and utilities as described above. To simplify notation,

suppress the index x, since the argument is identical for each demand state. We

provide a monotone algorithm for determining p∗ by induction on index k. Start with
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p∗0 = p and d∗0 = d, and construct iteratively

p∗k+1 =
(1− θ)u(d) + θu(d∗k)

(1− θ)d+ θd∗k
, d∗k = d(p∗k).

For any θ > 0, the sequence {p∗k} is monotone. At k = 0, p∗1 = u(d)/d > p∗0 = p,

implying d∗1 < d∗0. Because d
′(p) < 0 and u(d)/d decreases in d, it follows that p∗k+1 > p∗k

and d∗k+1 < d∗k. The sequence converges for any θ < 1, and the comparative statics

follow directly from the limit expression for p∗. The second part of the proposition

follows from Sy(p) being strictly increasing in y.

Figure 1 illustrates an optimal rationing situation for two supply states, y′ < y,

and one demand state. The figure is drawn so that equilibrium F corresponds to the

reference equilibrium: sticky and non -sticky demands both equal dx at the reference

price px. In this equilibrium, no rationing is required—condition (2.6) holds with

strict inequality on the left, as aggregate utility exceeds expenditures.

Figure 1: An illustration of the optimal price-control and rationing policy for two supply states.
Under the optimal price cap p∗x, triangles ABC and CEF have equal areas, the latter weighted by the
share of sticky consumers (1− θ). Rationing reduces demand at p∗x from Z to Y .

Now consider a negative supply shock, from y to y′, which moves the equilibrium

from F to X. Is it optimal to allow the price to rise to this new level? Under the
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price cap p∗x, the demand of non-sticky consumers adjusts to point C. Aggregate

utility Uz equals the area under AC, weighted by θ, plus the area under AF , weighted

by (1− θ). Expenditures equal the corresponding rectangles, yielding the difference

between the right- and left-hand sides of condition (2.6) as the triangle CEF weighted

by (1 − θ) minus the triangle ABC. Graphically, this difference increases with the

price cap: it is negative at F and positive at A. Hence, there exists a unique p∗x such

that ∆ABC = (1 − θ)∆CEF . If, without rationing, µz = 1, the equilibrium price

is below p∗x and no rationing is needed. If the unregulated price exceeds p∗x, as in

Figure 1, optimal rationing reduces demand to ensure that supply meets demand at

the capped price.

There is therefore a unique p∗x (independent of µz) such that the left inequality

in (2.6) binds. This condition is fully determined by the demand schedule. Given

p∗x, the corresponding optimal rationing rate µ∗
z is set so that demand equals supply,

Dz = Sy(p
∗
x). The same logic applies for any realization of demand; the price cap is

state-contingent in x.

2.4 Parametric Demands

To illustrate the mechanism in a tractable form, consider a class of semi-log demand

functions, to be estimated in the empirical application. We suppress the state notation

(z,x,y) when not essential.

Proposition 2.3 (Semi-log case). For the semi-log demand function

d(p) = exp

(
α− p

β

)
, (2.8)

with non-negative parameters α, β, the optimal rationing price satisfies

p∗ = λ(θ) β + p, (2.9)

where λ(θ) solves

(λ− 1) eλ =
θ

1− θ
. (2.10)

Proof. The semi-log specification implies the inverse demand p = α − β ln d, with
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elasticity p/β. Utility follows as u = βd+ pd, yielding indirect utility

u = v(p) = (β + p) exp

(
α− p

β

)
.

Following the iterative procedure from Proposition 2.2, the updating rule for the

optimal price cap is

p∗k+1 =
(1− θ)(β + p) exp

(
α−p
β

)
+ θ(β + p∗k) exp

(
α−p∗k
β

)
(1− θ) exp

(
α−p
β

)
+ θ exp

(
α−p∗k
β

) . (2.11)

Defining λk = (p∗k − p)/β, this recursion becomes

λk+1 = 1 +
θ λk e

−λk

(1− θ) + θ e−λk
. (2.12)

Starting with λ0 = 1, the sequence {λk} is strictly increasing and converges to the

unique fixed point λ(θ) satisfying (2.10).

The optimal rationing price in (2.9) depends only on the expected price p, the

semi-log slope parameter β, and the share of non -sticky consumers θ. In empirical

implementation, θ is identified jointly with α and β from estimated demand schedules.

Proposition 2.3 shows directly how θ shifts the price cap: λ(0) = 1, λ′(0) = 1/e ≈ 0.368,

λ(0.05) = 1.019, λ(0.1) = 1.039, and λ(0.5) = 1.28. Hence, a 10% share of responsive

consumers raises the distance between the optimal price cap and the reference price p

by roughly 4%. For any demand state x, the price cap increases one-to-one with p

and decreases with higher elasticity (lower β).

Finally, the policy can be expressed equivalently in terms of demand:

d∗ = e−λ(θ) d. (2.13)

Thus, for this class of demand functions, the relative reduction of non-sticky demand

before the price cap binds depends only on the share of responsive consumers. Non -

sticky demand falls by at least 63% before rationing becomes active.

Consider next iso-elastic demand with σ = p d′(p)/d(p).

Proposition 2.4 (Isoelastic case). For a constant elasticity of individual demand
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σ > 1, let the aggregate elasticity of demand be εD = σs, where s = d/Dx denotes the

share of responsive consumption in total demand. At the optimal p∗, it holds that

(1− θ)
(

p∗

p

)
+ θ

(
p∗

p

)1−σ

1− θ + θ
(

p∗

p

)1−σ =
ε∗D

ε∗D − s∗
, (2.14)

where ε∗D and s∗ are evaluated at p∗. Moreover, both p∗ and ε∗D increase with θ.

We omit the proof – the result follows after a few steps from p∗ = Uz/Dz in

Proposition 2.1.

The same observed εD can arise from different combinations of σ and θ, and

therefore the policy depends on the decomposition between intrinsic elasticity σ

and the share of responsive consumers θ. A higher θ raises the threshold price for

intervention.

The price cap is minimal when all demand is sticky (θ = 0), the result implies

in that case that prices can increase by a factor σ/(σ − 1) before rationing becomes

optimal:

p∗ =
σ

σ − 1
p.

The associated reduction in non-sticky demand is

d∗ =

(
σ − 1

σ

)σ

d,

so d∗/d < 1/e and d∗/d → 1/e ≈ 0.368 as σ → ∞. The demand ratio d∗/d increases

with elasticity σ: non-sticky demand falls by at least 63% before the price cap binds,

as in the case of semi-log demand.

The parametric demands show that the price cap policy remains well-defined even

when all demand is inelastic (θ = 0). To clarify the total welfare gain from the policy

in this case and in general, it proves useful to state:6

Remark 2.1. For given demand Dx and supply Sy schedules and state z, the total

increase in ex post surplus due to the policy is measured by XY Z in Fig 1.

6We omit the proof, which is not immediate; the complete argument appears in the working paper
version of this paper.
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2.5 Discussion and Roadmap

The main characterization establishes a simple rule: the planner regulates solely

through a state-contingent rationing policy and a price cap. The cap p∗x is pinned

down by the average utility per unit of total demand; rationing µ∗
z is chosen to clear

the market at p∗x for the realized supply. Proposition 2.1 gives the complementarity

condition: ration only when aggregate consumer surplus would turn negative. Proposi-

tion 2.2 shows how to implement the rule state by state, including comparative statics

in the share of non-sticky consumers θ. The parametric illustrations (semi-log and

iso-elastic) provide formulas for p∗x.

The remainder of the theory section extends and applies this rule along three main

margins. First, in Section 3 we relax the assumption of marginal-cost supply. As a

baseline, we introduce the incentive payments for truthful supply first without a price

cap (Section 3.1) and then with a cap (Section 3.2), and then introduce investments

that materialize the supply (Section 3.3). Second, Section 4 extends the framework

to endogenous selection into stickiness. Third, Section 5 incorporates distributional

concerns and selection externalities.

3 Incentive Payments for Efficient Supply

When supply is competitive, the planner can set the price cap based solely on demand:

the equilibrium price always reflects marginal cost. This assumption is unrealistic

when suppliers hold market power, leading reservation prices to deviate from true

marginal costs. Such strategic behavior would not matter if marginal costs were

observable and truthful supply bids could be enforced. But even in this case, firms

may have private information about investments that determine their marginal costs.

The incentive payments considered next provide a solution to both problems.

3.1 Incentive Payments without a Price Cap (θ = 1)

Consider n firms i = 1, . . . ,n with cost functions Ci(·). Each firm submits a non-

decreasing supply schedule ŝi : R+ → R+. Aggregate supply is Ŝ(p) =
∑n

i=1 ŝi(p),

and the market clears at the price p̂ solving Ŝ(p̂) = D(p̂). For each firm i, define the
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counterfactual clearing price p̂−i from∑
j ̸=i

ŝj(p̂−i) = D(p̂−i),

and define the residual demand

Di(p) = D(p)−
∑
j ̸=i

ŝj(p).

In addition to market revenue, firm i receives a side transfer,

Ti(p̂,p̂−i) =


∫ p̂−i

p̂

Di(p
′) dp′, if p̂−i > p̂,

0, otherwise,

so its payoff is

πi = p̂ ŝi(p̂)− Ci(ŝi(p̂)) + Ti(p̂,p̂−i).

Recall that each Ci is differentiable and strictly convex. In addition, we require

that each ŝi is right-continuous and non-decreasing. Together with continuous demand,

these conditions ensure existence and uniqueness of p̂.

Proposition 3.1 (Incentive payments without a price cap). Under the mechanism

above:

(i) Dominant-strategy truthfulness. Each firm’s dominant strategy is the

truthful schedule s∗i (p) = (C ′
i)

−1(p). At the realized clearing price p̂,

dπi

dsi(p̂)
= p̂− C ′

i(ŝi(p̂)),

so the best response satisfies C ′
i(ŝi(p̂)) = p̂, independently of others’ bids.

(ii) Efficiency. With truthful bids, the allocation maximizes total welfare

W =

∫ Q

0

D−1(q) dq −
n∑

j=1

Cj(qj), Q =
n∑

j=1

qj.
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(iii) Payoff equals marginal contribution. Under truthful bidding,

πi = W −W−i,

where W−i is welfare when firm i is removed and the market re-clears at p̂−i.

Proof. See Appendix F

The proof follows (relatively) standard arguments for Vickrey–Clarke–Groves

(VCG) mechanisms. The transfers Ti(p̂,p̂−i) top up firms’ market revenues so that each

firm’s total payoff equals its marginal contribution to welfare. Under strictly increasing

marginal costs (C ′′
i > 0), these contributions are subadditive,

∑
i(W −W−i) < W ;

hence total transfers remain below aggregate surplus. Intuitively, the loss from

removing one firm is partly offset by re-optimization of remaining suppliers.

The strong efficiency properties hinge on private information residing on the supply

side while the planner observes demand. If both sides held private information, total

surplus from trade would generally be insufficient to finance the transfers (Krishna and

Perry, 1998), leading to a multi-unit version of the Myerson–Satterthwaite Theorem

(Myerson and Satterthwaite, 1983).

3.2 Incentive payments with a price cap (θ < 1)

We now extend the mechanism to the case of sticky demand (θ < 1). The cap p∗ is

designed under the assumption of truthful supply. We therefore focus on mechanisms

that ensure this assumption holds: they induce truthful supply when p∗ binds.

When θ < 1 but the cap does not bind, Proposition 3.1 applies as such. Assume

thus that the cap binds. When firm i is removed, rationing must increase and

production falls to Q−∆, defined by

C ′
−i(Q−∆) = p∗.

The associated welfare change can be decomposed into two parts:

A =

∫ Q−∆

0

(
C ′

−i(q)− C ′(q)
)
dq, B =

∫ Q

Q−∆

(
p∗ − C ′(q)

)
dq.

Term A represents the pure cost savings generated by firm i. The firm receives the
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full value of these savings at the constant price p∗. Term B captures the net surplus

from firm i’s participation, that is, the additional output enabled at price p∗. This

surplus is also fully compensated through market revenue. Therefore, when the cap

binds, no additional transfer is required, and the optimal mechanism sets Ti = 0.7

Proposition 3.2 (Incentive payments with θ < 1). Suppose p∗ is the welfare-

maximizing price cap. Under the Groves–Clarke pivot rule, if p∗ binds:

(i) Truthful supply is a dominant strategy for each firm,

(ii) Each firm’s payoff equals its marginal contribution to welfare

πi = W −W−i = A+B,

(iii) Ti = 0.

If p∗ does not bind, Proposition 3.1 applies.

The incentive payments defined here can therefore be implemented in the same

way as under Proposition 3.1, but when the cap binds, the required transfer is zero.

The mechanism admits two implementation properties.

(i) Simplicity. The mechanism relies exclusively on repeated applications of the

standard market-clearing rule. The planner computes the equilibrium price once

with all firms and n additional times, each time removing a single firm to obtain

the counterfactual equilibrium. These counterfactuals determine transfers but do not

affect the final allocation or price.

(ii) Transfer reduction through price caps. In tight markets, counterfactual

prices may rise substantially, implying large transfers in the absence of price regulation.

7If the cap does not bind with C but does bind with C−i, we need to modify “A+B” slightly.
Let P (q) be inverse demand. Define Q by C ′(Q) = P (Q) = p0 < p∗ (the cap does not bind), let Q′

satisfy P (Q′) = p∗ (so Q′ < Q), and let Q′ −∆ satisfy C ′
−i(Q

′ −∆) = p∗ (so ∆ > 0). Rationing
takes place over [Q−∆,Q′] and surplus change over [Q′,Q] is given by the Harberger triangle

B′ ≡
∫ Q

Q′

(
P (q)− C ′(q)

)
dq.

Thus, the total welfare change is A+B +B′.
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A binding welfare-maximizing price cap limits this escalation and, as shown in Propo-

sition 3.2, reduces transfers to zero. Firms are fully compensated for their marginal

contributions through the capped market price. By this property, the mechanism

is financially more disciplined than a system of incentive payments without the cap

policy.

A large policy and regulatory literature, mostly in the electricity context (see Fabra,

2018), views price caps and capacity remuneration mechanisms as complementary

instruments: caps limit exposure to high prices and market power, while capacity

payments restore the scarcity rents needed for investment. In our framework, by

contrast, the price cap p∗ arises as the welfare–maximizing response to sticky demand

under uniform pricing. This distinction is central for the investment stage: as we show

next, the mechanism aligns firms’ investment incentives with social welfare without

relying on separate capacity payments. A broader discussion appears in the concluding

section.

3.3 Investments on the Supply Side

The mechanism described above applies without an investment stage, but it is natural

to ask how the price-cap policy affects producers’ investment decisions that determine

the observed supply schedules Sy(p). We now introduce an investment stage preceding

the realization of the market state z = (x,y).

Each firm i = 1, . . . ,n chooses an investment level Ki at cost Gi(Ki), where Gi(·)
is convex and differentiable. Investment shifts the firm’s operating cost function

Ci(qi;Ki), which is convex in output and nonincreasing in Ki. The aggregate supply

schedule is

Sy(p) =
n∑

i=1

si,y(p;Ki),

with each si,y strictly increasing in price and in the supply state y.

Proposition 3.3 (Ex ante investment efficiency). Suppose the planner implements

the ex post rationing policy (p∗x, µ
∗
z), defined in Propositions 2.1–2.2, and firm-specific

incentive payments defined in Proposition 3.2. Under uniform pricing and non-

discriminatory rationing, the policy (p∗x, µ
∗
z, Ti) maximizes expected welfare ex ante,

subject to voluntary firm investment decisions with general convex costs Gi(·).
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Proof. Firm i’s profit in state z equals its marginal contribution to total welfare:

πi,z(K) = Wz(K)−Wz,−i(K−i).

Taking expectations over market states, firm i chooses its investment Ki to solve

max
Ki

Ez[πi,z(K)]−Gi(Ki).

The first-order condition for this problem coincides with the planner’s maximization

problem

max
K

Ez[Wz(K)]−
∑
i

Gi(Ki),

so equilibrium investment is efficient ex ante. In equilibrium, each firm invests until

its private marginal benefit—its expected contribution to total welfare—equals its

marginal investment cost. Since transfers ensure that firms internalize their marginal

contributions, no other uniform-price mechanism can improve expected welfare.

Interpretations of investment. The investment variable Ki can be interpreted

broadly as any firm-specific decision that shifts the cost function Ci(qi;Ki) or its

curvature. In the simplest case, Ki represents capacity expansion that enlarges the

feasible output set, as in traditional capacity investment. More generally, Ki may

capture a technology choice, or an improvement in operational reliability that increases

the expected availability of capacity while reducing its variance. It can also be viewed

as a flexibility investment that flattens marginal costs and enables faster response to

supply shocks, or as a hedging investment that reduces exposure to the carbon price

by lowering the emissions intensity of production. Regardless of interpretation, all

these decisions enter the market stage through the cost function Ci(·;Ki). Because the

mechanism rewards each firm according to its marginal contribution to social welfare,

πi = W − W−i, firms internalize the full social value of their investments. Hence,

the same dominant-strategy property that guarantees efficiency ex post also ensures

efficient investment ex ante, independent of the particular technological form of Ki.

Remark. If the market is perfectly competitive and firms are small (so investments

are continuous and nonlumpy), marginal contributions are already internalized through

the price mechanism, and efficient investment arises without additional transfers. This

result parallels Makowski and Ostroy (1995), where agents rewarded according to
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their marginal contributions implement efficient allocations. The present setting, with

incentive payments designed by the planner, achieves this principle more generally:

they provide each firm with its marginal contribution to social surplus, ensuring

efficiency both ex post and ex ante.

A parallel issue arises on the demand side: consumers may choose whether to be

price–responsive, and this choice is itself a welfare–relevant margin (e.g., Ito et al.,

2021). In environments where the planner can discriminate among demand types,

the efficient policy would ration only the sticky consumers—an insight going back to

Wilson (1989) and Joskow and Tirole (2007). In our setting, however, uniform pricing

rules out such discrimination. Given this constraint, the induced selection between

responsive and sticky consumers is efficient under the ex post policy derived above.

The next section establishes this result and after this we show how distortions arise

once distributional objectives are introduced.

4 Endogenous Selection into Stickiness

The planner commits to the ex post policy characterized in Propositions 2.1–3.2 and

applies it in every realized state z = (x,y) using observed market schedules (Dx,Sy)

to implement (p∗z,µ
∗
z). Consumers choose whether to be price–responsive before z is

realized and form rational expectations over the induced distribution of equilibrium

prices pz.

Let each consumer draw a private cost c ≥ 0 from a continuous CDF H on R+ for

observing and responding to price. This is the cost from becoming non-sticky. For

demand state x, write the indirect (gross) surplus at price p as

ϕx(p) ≡
∫
p′≥p

dx(p
′) dp′,

well-defined under the assumptions stated. A responsive consumer attains ϕx(pz)

at the realized price; a sticky consumer consumes dx = dx(px), where px ≡ E[pz |x],
and attains ϕx(px). Ex ante (before z is realized), the expected surplus gain from

responsiveness is

∆ ≡ Ez

[
ϕx(pz)

]
− Ez

[
ϕx(px)

]
,
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where the expectation is over the joint distribution of (x,y).

Proposition 4.1 (Efficiency of endogenous responsiveness). Fix the optimal ex post

policy rule (p∗z,µ
∗
z), applied in every realized state z. Then the competitive equilibrium

ex ante selection into responsiveness maximizes welfare achievable under uniform

pricing. In equilibrium, consumers become responsive if and only if c ≤ ∆, so that

θ = H(∆).

Proof. (i) Ex post efficiency given θ. By Propositions 2.1–3.2, for each realized z

the allocation induced by (p∗z,µ
∗
z) maximizes Wz subject to uniform pricing and the

rationing rule, taking the aggregate demand generated by the current share θ as given

and with truthful supply ensured.

(ii) Planner’s ex ante marginal condition. Consider increasing the share of re-

sponsive consumers by a marginal amount dθ before z is realized. Because the

realized allocation in each z is already efficient conditional on θ (envelope logic with

quasi-linearity and truthful supply), the first–order effect on expected welfare equals

the expected gross surplus gain of converting one marginal consumer from sticky to

responsive:

d

dθ
Ez[Wz(θ)] = Ez

[
ϕx(p

∗
z)
]
− Ez

[
ϕx(px)

]
= ∆. (4.1)

The social marginal cost of increasing θ is the cost of the marginal type, which equals

H−1(θ). Thus the planner’s FOC is ∆ = H−1(θ).

(iii) Private choice and rational expectations. A consumer with cost c becomes

responsive iff c ≤ ∆, so in equilibrium the marginal type satisfies c∗ = ∆ and the

induced share is θ = H(c∗) = H(∆). Hence the private cutoff condition coincides with

the planner’s FOC, implying ex ante efficiency of the equilibrium θ.

This result formalizes the idea that stickiness need not be an anomaly in this setting:

the planner applies the ex post policy state by state, consumers anticipate the

induced price distribution and optimally choose their responsiveness, and the resulting

composition θ of sticky and responsive demand is welfare-optimal ex ante under

uniform pricing.
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5 Inequality-aware welfare objective

We now extend the planner’s objective to account for heterogeneity in the marginal

value of money. The idea is that the planner may be more concerned about the welfare

of certain consumer types, as in Dworczak et al. (2021), Akbarpour et al. (2024), Pai

and Strack (2022), and Ahlvik et al. (2024). Each individual has a welfare weight ω,

which reflects the planner’s valuation of a unit of monetary surplus accruing to that

individual. We assume that ω is unobservable at the individual level but that the

planner knows its distribution. In particular, the planner observes the average welfare

weights ω̄s and ω̄r for sticky and non-sticky consumers, respectively, and uses these

weights to evaluate utility in a quasi-linear setting.

Based on the analysis of strategic supply, it is without loss of generality to

describe the price-cap policy assuming truthful supply. We start by assuming that

the investments have already been made and thus technology choices are given. The

aggregate utility is modified as:

Uω
z = µz

(
(1− θ)ω̄s ux(dx) + θω̄r ux(dx)

)
, (5.1)

and the planner’s welfare objective becomes:

W ω
z = Uω

z − Cy(Dz). (5.2)

This leads to the following extension of the optimal policy condition (proof omitted

for brevity):

Proposition 5.1 (Inequality-aware price cap). Under the inequality-weighted welfare

objective, the optimal policy satisfies:

pzDz(pz) ≤ Uω
z ⊥ µ∗

z ≤ 1. (5.3)

If the price cap binds, the optimal price satisfies:

p∗z = p∗,ωx =
(1− θ)ω̄s ux(dx) + θω̄r ux(d

∗
x)

(1− θ)dx + θd∗x
, (5.4)

where d∗x = dx(p
∗,ω
x ).

The optimal price cap p∗,ωx equates the welfare-weighted average utility per unit of
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demand across consumer types. If ω̄s > ω̄r—that is, if the planner places greater

weight on sticky consumers who are less price responsive and more vulnerable—then

the optimal price cap is lower than in the unweighted case.8 This reflects the increased

importance of shielding inelastic consumers from high prices when the planner values

distributional equity.

However, once investments that determine responsiveness are endogenous, the

distributive objective alters the nature of the optimal policy. In contrast to the main

setting, the ex post price-cap mechanism may no longer coincide with the ex ante

optimal mechanism. As shown, for instance, in Laffont and Tirole (1993) and Pavan

et al. (2014), when early-stage decisions affect later allocations, the planner may wish

to distort continuation policies to influence investment incentives. In Appendix F we

show that, in the natural benchmark where the planner applies the same welfare weight

to the self-selection cost and to surplus from market interaction, no such distortion is

optimal: the optimal price-cap rule is unchanged.

6 Application: Energy crisis, France 2022–2023

6.1 Background

The European energy crisis emerged following the onset of the war in Ukraine, which

disrupted supplies of gas, oil, and electricity and led to widespread economic impacts

due to a surge in energy prices. Figure 2 illustrates the timeline and evolving

expectations of the crisis’s severity, as reflected in France’s electricity prices. It

shows the prices at which electricity for 2023 delivery were contracted in 2021–2022.

Contract prices rose to more than ten times (!) their usual levels prior to 2022,

imposing insurmountable cost burdens on entities needing to procure electricity in

advance, such as those serving final consumers. The crisis threatened the stability

of Europe’s integrated electricity market by endangering the solvency of firms with

contractual commitments, with potential collateral demands exceeding one trillion

euros.9 To avert a “Lehman Brothers scenario in the energy sector,” governments

8Formally, this can be shown by using our fixed-point iteration pk+1 = Φκ(pk) ≡ u(d)+κu(d(pk))

d+κ d(pk)
,

in which κ ≡ ω̄r

ω̄s
· θ
1−θ , and observing that the fixed point is strictly increasing in κ.

9See Bloomberg News, “Energy Trading Stressed by Margin Calls of $1.5 Trillion,”
September 6, 2022. Available at https://www.bloomberg.com/news/articles/2022-09-06/

energy-trade-risks-collapsing-over-margin-calls-of-1-5-trillion.
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committed tens of billions in loans and guarantees.10

Prices decoupled from expected marginal costs of production. A central factor

behind this decoupling was the EU policy for setting and updating a price cap

for wholesale electricity across the entire EU region. On April 4, 2022, the hourly

wholesale price of electricity in France reached a critical level, prompting the EU

protocol to automatically raise the maximum clearing price permitted under EU rules

from €3,000/MWh to €4,000/MWh (CRE, 2022). According to the protocol, the

maximum price would be automatically raised again under the same procedure if

the crisis were to unfold towards Winter 2022/23. Seen through the lens of Summer

2022, such a development was expected, and it prompted a hike in prices for future

guaranteed-supply contracts: contract prices carried a markup reaching nearly 40%.

The market anticipated power supply shortages where prices would be determined by

the cap rather than by marginal costs.11
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Notes. Electricity forward market price for 2023 and the marginal cost in France in 2021-2022. The
marginal cost of a gas-fired power plant with a 45–55% efficiency using 2023 forward price for gas.
Source: own calculations. Vertical lines indicate the EU price cap revisions for wholesale electricity.

10See Tom Wilson and Philip Stafford, “Why are Europe’s power producers running out
of cash?,” Financial Times, September 6, 2022. Available at https://www.ft.com/content/

3a188669-7eeb-4154-91a8-f808ed8ced71.
11In September 2022, the rule for further price cap increases was suspended, and the cap was set

back to €4,000/MWh (as indicated by the last vertical line).
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6.2 Crisis quantification

We begin by quantifying the expectations shown in Fig. 2, disentangling the contribu-

tions of three drivers: (i) input price developments (notably natural gas), (ii) capacity

shortages in nuclear production, and (iii) the EU price-cap rule. The war in Ukraine

led to a reduction in gas supply and raised the marginal cost of thermal generation.

Independently, France’s nuclear fleet, normally inframarginal, encountered a poten-

tially systemic stress-corrosion problem (corrosion-induced cracking), taking out about

40% of nuclear capacity at that time and creating uncertainty about its near-term

availability (CRE, 2022). Together, these factors contributed to expectations that a

supply crisis might emerge in 2023, particularly during the winter.

To analyze the three drivers, we consider hourly electricity prices for 2023 both as

they occurred and in counterfactual situations capturing factors (i)-(iii). The actual

prices (and quantities) come as data from year 2023, but we also reproduce them

using hourly demand and supply schedules. For counterfactuals, we hold the hourly

demand schedules as given and construct the supply curve for each hour of the year

from engineering estimates combined with the counterfactual scenario assumptions.

The constructed supply curve allows analyzing separately the effect of higher input

prices and reduced nuclear availability.

The data are drawn from the French day-ahead wholesale electricity market. For

each hour between 1 January and 31 December 2023, we observe the complete set

of demand and supply bids, price–quantity pairs, together with the market-clearing

price and quantity. The dataset contains approximately 4.3 million anonymous bids,

averaging about 500 per hour. We use unit-level information for 57 fossil-fuel plants

obtained from RTE, the French transmission system operator, to build the supply

estimates that depend on fossil inputs. These data report nameplate capacity (MW),

technology, e.g., combined cycle gas turbine (CCGT) or steam turbine (ST), and

commissioning year. We match technology and vintage to engineering-based heat-

rate estimates to recover marginal cost curves. Appendix B provides details, but

two features are noteworthy. First, marginal-cost estimates combined with observed

demands reproduce the baseline 2023 hourly equilibrium once we include markups with

magnitudes similar to those documented in Reguant (2014). Positive markups are not

inconsistent with efficiency, as generators face start-up costs. Second, not all supply

and demand clear through the exchange. To obtain an aggregate representation, we

adjust the bid schedules using day-ahead forecasts of both total demand and supply;
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this procedure replicates the equilibrium outcomes up to rounding error.

The observed prices in 2023 yield a mean of €96/MWh. Table 1 contrasts this

baseline with our quantification of crisis expectations. The first row reports the effect

of higher gas input prices, set to the forward contract input prices observed in August

2022; these values exceed the input prices that ultimately materialized in 2023. Under

this counterfactual, the mean expected price rises to €155/MWh. The columns report

results for alternative price-cap levels, reflecting the range of outcomes that the EU’s

administrative price-cap protocol could have generated by 2023. Across these caps

ranging from 3,000 to 7,000 €/MWh, expected prices remain unchanged: the increase

in input costs does not raise the market price sufficiently for the cap to bind in any

hour. We conclude that higher gas prices alone, while raising expected prices by

roughly 60%, are insufficient to account for the expectations depicted in Fig. 2.

Table 1: EU price cap: Counterfactual mean hourly prices in 2023

Nuclear Price cap (€/MWh) Share of hours
availability 3,000 4,000 5,000 6,000 7,000 rationing

100% 155 155 155 155 155 0
90% 203 206 210 214 218 0.004
80% 298 316 335 353 372 0.019
70% 482 537 592 646 701 0.055
60% 844 999 1,153 1,308 1,462 0.155

Notes. The table reports simulated 2023 market outcomes by nuclear availability (rows) and price
caps (columns). The share of hours with rationing applies to all columns 2–6. Input prices are fixed
at 25 August 2022 closing levels. Nuclear availability is relative to realized 2023 nuclear generation.
All prices are in €/MWh.

As expected, as nuclear availability for 2023 declined from 100% to 60%—the level

observed in August 2022—expected market prices rise sharply. In this table, input

prices are held constant at their August 2022 forward levels, so variation across rows

reflects only changes in nuclear availability relative to actual 2023 production. At

full (100%) availability, the expected price remains €155/MWh across all price-cap

levels. At 90% availability, expected prices rise to €203–€218/MWh, and at 80% they

move into the €298–€372/MWh range. Further reductions generate steep increases:

at 70% availability, expected prices lie between €482 and €701/MWh, and at 60%

availability they reach €844–€1,462/MWh. The sensitivity of expected prices to the

price-cap level also increases as availability falls. Although in August 2022 expected
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forward prices briefly exceeded €1,000/MWh and nuclear availability was close to

60%, we take 70% availability as a central scenario for 2023 expectations and use the

€7,000/MWh cap as our benchmark.

Scarcity drives prices away from marginal cost. When the unconstrained market-

clearing price exceeds the administrative ceiling, the cap sets the price, so expected

prices reflect both marginal unit costs and the frequency with which the cap binds.

This mechanism generates the nonlinear relationship between the expected price and

the price cap shown in Table 1. The last column reports the share of hours in which

the cap binds.12 Notably, even a 5% share of binding-cap hours implies that rationing

is anticipated as a regular event—about one hour per day on average. The mean

rationed quantity in binding-cap hours remains below 10% of total load in all cases; in

95% of binding-cap hours, the rationed quantity is below 16% of load (Appendix E).

6.3 Optimal price cap

We apply the optimal price-control mechanism to the 2023 fundamentals. In this

counterfactual equilibrium, the price cap is set at its optimal level rather than the

EU cap, yielding a new counterfactual mean price for 2023. This mean price is

the contract price that market participants should have expected under the optimal

policy.14 We implement the mechanism in two ways that yield essentially the same

results. First, we compute the counterfactual equilibrium numerically using the raw

demand bid data and our counterfactual supply estimates. Second, instead of using

the raw step-function bid schedules, we fit a parametric demand curve to each bid

schedule and run the mechanism using the fitted curves. The parametric approach

links the empirical analysis more directly to the theory and clarifies the quantitative

determinants of the optimal cap.

For each hour, we observe a demand schedule as a step function constructed from

a set of bid price-quantity pairs, denoted (pi, Dxi)i, where i indexes points along

the demand curve for any given hour x. We approximate this schedule using the

12This share is almost invariant across price cap levels in columns 2–5. That is, a higher price cap
level does not increase supply but increases the price to be paid for the available supply.

14Here, as in Fig. 1, contract is a futures contract on a fixed quantity at a fixed price.
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parametric form:

Dxi = γx + ηx exp

(
− pi
βx

)
+ εxi, (6.1)

where γx, ηx, and βx are parameters to be estimated for each hour x, and εxi is

an error term. We drop subscripts x,i below. We fit the formula in (6.1) to a

curve, as the bids define a schedule, using maximum likelihood estimation. Taking

the estimated γ, η,β, and the reference price p, the expected volume from (6.1) is

d = γ+ η exp(−p/β), which gives the sticky volume for p → ∞ and thereby the sticky

share follows:

1− θ =
γ

γ + η exp(−p/β)
. (6.2)

By defining α = β ln(η/θ) we can rewrite an estimate for the demand in terms of

θ,α,β:

D = (1− θ)d+ θ exp

(
α− p

β

)
. (6.3)

This is now a demand schedule with a sticky part and a non-sticky price-responsive

part, with d(p) taking a semi-log form as in (2.8) of illustration 2 in Section 2.4. The

full set of steps for the procedure is:

1. Estimate demand (6.1) for each hour.

2. Impute the reference price p. 16

3. Compute the optimal price cap p∗ as in Proposition 2.3 using the estimated

demand parameters.

4. If p∗ binds:

(i) activate the supply bids with reservation prices (weakly) below p∗, and

(ii) eliminate demand bids (pro-rata) until the demand volume equals the supply

volume at p∗.

.
16The reference price anchors the sticky demand, reflecting consumption commitments made in

the past: we construct the reference price as a rolling one-year average of realized market prices.
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The key features of the estimated demand schedules can be summarized briefly.

The mean estimated parameters are γ ≈ 46.0 GW, η ≈ 8.0 GW, and β ≈ 140.4

e/MWh in 2023. The parametric form fits the bid schedules closely: replicating

market outcomes using the estimated demand schedule, instead of the actual bids,

leaves hourly equilibria nearly unchanged.

The elasticity of total demand takes a convenient form,

εD(p) =
η p

β
(
η + γep/β

) ,
which simplifies to εD = p/β for the non-sticky component (γ = 0). To illustrate the

ballpark magnitudes, we compute the optimal price cap using the mean estimated

demand parameters (γ ≈ 46.0, η ≈ 8.0, and β ≈ 140.4) and the average non-sticky

demand share (θ ≈ 0.026). Substituting this value of θ into the defining equation

(λ − 1)eλ = θ/(1 − θ) yields λ(θ) ≈ 1.01, which implies λ(θ)β ≈ 142 e/MWh. By

Proposition 2.3, the corresponding optimal cap is therefore approximately 142 e/MWh

above the reference price p. This calculation is purely illustrative: in the empirical

analysis we compute p∗ separately for each hour of 2023 using the hour-specific

demands, with details reported in the Appendix.

Table 2: Optimal price cap: Counterfactual mean market prices in 2023

Nuclear Optimal price Market price Share of hours
availability cap (€/MWh) (€/MWh) rationing

100% 573 154 0.011
90% 597 190 0.030
80% 626 242 0.082
70% 659 331 0.201
60% 718 443 0.387

Notes. The table reports the optimal price cap, the resulting mean market price, and the share of
hours in which rationing occurs in simulations for 2023. Input prices are fixed at 25 August 2022
closing levels. Nuclear availability is expressed relative to realized nuclear generation in 2023. All
prices are in €/MWh.

Table 2 presents the expected 2023 market prices under the optimal cap as supply

conditions tighten, mirroring the structure of Table 1. The cap in each hour is

determined from the same demand schedules in each scenario, but the reference price

varies across scenarios: as capacity becomes scarcer, the reference price rises, shifting
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up the implied cap. The number of hours in which the cap binds increases with the

nuclear shortfall and is now well above the levels in Table 1, exceeding 20 % of hours

under 70% availability. However, the quantities rationed in binding-cap hours still

remain on average close to 10 percent of total load (Appendix E). Intuitively, when

the supply curve is steeply rising, a relatively small reduction in demand lowers the

price to the desired level. The difference in the rationed amount required to bring the

price down by hundreds is only a few percentage points.

Table 3 shows how the price-cap mechanism affects the wholesale cost of procuring

electricity. In the central case (70% availability), the optimal price-cap rule lowers

expenditures by about two-thirds relative to a fixed €7,000/MWh cap—roughly €200

billion.

Table 3: Total Expenditures (million e)

Nuclear Price cap rule
availability Fixed at €7,000/MWh Optimal Difference

100% 65,910 64,889 1,021
90% 97,239 79,108 18,131
80% 177,477 100,555 76,922
70% 333,096 133,745 199,351
60% 647,283 171,175 476,108

Notes. Expenditures are the wholesale cost of procuring total electricity consumption in France at
market prices for the hours for which we have full data (N = 7,488), scaled to a full-year equivalent
(N = 8,760). The difference column reports the savings from optimal rationing relative to the fixed
price-cap rule at €7,000/MWh. Input prices are fixed at 25 August 2022 closing levels. Nuclear
availability is expressed relative to realized nuclear generation in 2023. All values are in millions of
euros.

6.4 Incentive payments

We compute the incentive payments required to support truthful supply. The calcu-

lation uses the observed demand and estimated marginal-cost schedules to evaluate

each marginal unit’s contribution to total surplus for each hour. A unit’s marginal

contribution equals the market revenue it receives at the clearing price plus any

additional payment needed to align its compensation with the social value it generates.

Table 4 reports the incentive payments for the main marginal unit types in 2023
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under two scenarios for nuclear availability (100 percent and 70 percent). For each

scenario, we compare a baseline case, in which the anticipated EU price cap of

€7,000/MWh applies, with the optimal price-cap policy documented in Table 2. For

each unit type, we also report the corresponding price–cost margin under the two

policies.

Two patterns emerge. First, the optimal price control substantially reduces

markups, especially under lower nuclear availability: for example, the markup for

combined-cycle gas falls from €3,000/MWh to €200/MWh at 70% availability. Second,

the incentive payments required to implement truthful bidding remain small in all

cases. Even at 70% availability, the plant level payments remain below 15 euros per

MWh under the optimal policy—an order of magnitude smaller than the corresponding

markups17. This reflects that most compensation is provided through market revenues

and that the presence of many inframarginal units limits the marginal value of any

individual generator.

Table 4: Price–cost markups and incentive payments under baseline and optimal cap

Markup (€/MWh) Incentive payments (€/MWh)
Units Nuclear Baseline Optimal Baseline Optimal

Coal 100% 203.2 155.9 13.5 6.1
Gas, CCGT 100% 13.4 19.2 25.0 2.3
Gas, ST 100% 16.7 17.6 31.7 3.0
Oil 100% 206.7 131.0 2.4 1.6

Coal 70% 1,530.4 272.8 13.9 6.4
Gas, CCGT 70% 3,001.0 206.2 13.8 8.5
Gas, ST 70% 4,389.6 236.8 3.4 14.8
Oil 70% 1,211.1 209.1 5.6 2.8

Notes. “Baseline” refers to the anticipated EU price cap (€7,000/MWh). “Optimal” refers to the
optimal rationing mechanism. Values are simulated mean outcomes for 2023 under the specified
nuclear availability, expressed relative to realized nuclear generation in 2023. Input prices are fixed
at 25 August 2022 closing levels.

17Table 4 shows that incentive payments can be higher under optimal rationing than in the baseline.
This is driven by a change in dispatch composition: high-cost gas units run fewer hours under optimal
rationing.

31



7 Conclusion

Many markets combine uniform pricing with buyers who must commit before the

realized price is known. In short-term funding, banks must obtain secured overnight

funding to meet liquidity obligations, generating inelastic demand for the high-quality

collateral used in repo transactions (Krishnamurthy et al., 2014). In housing, turnover

units reprice, so posted rents reflect conditions faced by movers while most tenants

remain bound by leases (Genesove, 2003). In health insurance, employees choose

annual plans and deductibles before medical needs and out-of-pocket prices are realized

(Handel, 2013). In transportation, peak-period demand is nearly inelastic because

schedules are fixed and congestion tolls cannot easily be avoided (Arnott et al., 1993).

In all these cases, a flexible margin sets the market-clearing price, while much of

demand is effectively inelastic in the short run.

When committed and flexible agents are pooled under a single price, price control

can improve efficiency. In the cases above, instruments such as rent stabilization,

regulated copays, and peak-fare caps can thus be viewed as efficiency responses rather

than purely distributive ones (cf. Dworczak et al., 2021). We characterize this logic,

deriving the optimal state-contingent cap and rationing rule.

A broader question is when inequality of outcomes makes uniform-price markets

unacceptable. The Atkinson–Stiglitz theorem implies that if substitution patterns

across goods are similar across the income distribution, the desired equity–efficiency

compromise can in principle be implemented through income taxation or targeted

transfers, making commodity-specific interventions redundant (Atkinson and Stiglitz,

1976). When this condition fails—as is plausible for essential services such as electricity,

which are consumed both by households and as intermediate industrial inputs—the

redistribution problem becomes a market-design problem. Our analysis characterizes

optimal price caps and rationing as one response to this tension. A fuller treatment of

inequality-aware market design may require instruments that condition directly on

income or other observables (e.g., differentiated tariffs or targeted mechanisms); see

Ahlvik et al. (2024, 2025) for discussion. We leave this open for future research.
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A Data and replication package

Available in Gerlagh et al. (2025)

B Day-ahead market

Market data. Our quantification builds on the actual bids submitted to the French

day-ahead market. Bid data is obtained from the European common electricity

market’s Single Day-Ahead Coupling (SDAC) files, accessed through one of the

common market operators, Nord Pool.

Figure B.1: Market price replication
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Notes. Density plots of the historical hourly day-ahead spot prices in France in 2023 and the market
prices as replicated by our model.

Replication. We construct price-responsive demand schedules from bid curves with

price–quantity pairs and replicate market outcomes using similarly constructed supply

bids. Replication of the historical equilibrium market outcomes is a data robustness

check. We use a parsimonious linear program explained in Liski and Vehviläinen

(forthcoming) to map the submitted bids to equilibrium prices and quantities hour

by hour over the sample period. The bid curves do not contain all information

required for a full replication of aggregate market outcomes, due to imports, exports,

non-standard bids, and transactions outside the exchange. We therefore level-adjust

demand and supply bid curves so that the aggregate equilibrium quantity matches

the day-ahead load forecast—information available at the time bids are submitted
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(data from ENTSO-E Transparency Platform). In the counterfactual equilibrium

with rationing we hold these adjustments fixed. This shortcut simplifies allocation

under rationing, though a regulator with full access to the algorithm could implement

the mechanism EU-wide. Our model reproduces historical market prices with high

accuracy, see Fig. B.1.

C Parametric demand estimation

We estimate the parametric form in Section 6.3, hour by hour, using each hour’s

bid-curve data, i.e., the price (pi) and quantity (Dxi) pairs. Table C.1 reports summary

statistics for the MLE estimates of the parameter values, γx, ηx, and βx, and for the

imputed non-sticky demand share θx. To assess fit, we substitute the observed demand

bid curve with the hour-specific parametric demand and recompute the market price

for each hour, holding market supply as in data. As shown in Fig. C.2, the use of

parametric demand yields prices broadly consistent with historical outcomes, with

greater variation at the extremes.

Table C.1: Parameter demand estimates

Statistic N Mean St. Dev. Min Max

γ 8,760 45.971 10.051 23.425 80.531
η 8,760 8.049 4.767 0.112 26.350
β 8,760 140.400 159.663 12.593 2,605.899
θ 8,760 0.026 0.017 0.00000 0.112

Notes. The table reports mean, standard deviation, and the minimum and maximum values of the
estimated parameter values γ, η, and β, and the imputed value of θ, for the N hours in the data.

D Marginal cost supply

The counterfactual supply curve is constructed from plant-level data for large fossil-fuel

units and aggregate production by energy source for other generation: hydro, nuclear,

wind, solar, and bio/waste and other small units.

The marginal costs of fossil-fuel plants depend on fuel and carbon prices and heat

rates (electric efficiency). Plant-level data are from RTE, the French TSO, and include
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Figure C.2: Replicated market prices and parametric demand prices
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Notes. The Figure compares 2023 French day-ahead spot prices from the replication with prices
computed using the estimated parametric demand. For each hour of the day, the plot shows a box
that represent the middle 50% of data, a line inside for the median, whiskers drawn at most 1.5 times
the interquartile range from the box, and outliers beyond the whiskers as individual data points
(further 135 outliers are cropped from view).

start date of operation, maximum capacity in megawatts (MW), and technology

(combined cycle, steam turbine, and cogeneration status). RTE data do not report

fuel sources. We use the Global Bioenergy Power Tracker (Sep 2025) and the Global

Oil and Gas Plant Tracker (Jan 2025) to map plants with a capacity of over 20 MW

to their fuel sources (combustion turbines can use coal or bio/waste; steam turbines

can use natural gas or oil).

For input fuel and carbon prices, we use daily settlement prices from Refinitiv

Eikon as follows: ICE Rotterdam Coal front-month futures for coal, EEX TTF Gas

Day-ahead for natural gas, Brent FOB for oil, and EU ETS spot for carbon. Dollar

values are converted to euros using the USD/EUR rate obtained through the European

Central Bank API, and fuel energy content is converted to MWh using calorific values

of 6,000 kcal per tonne of coal, 11.63 MWh per tonne of oil, and 7.37 barrels per

tonne of oil. We obtain heat rates by mapping RTE technology and start date to

the engineering values in Mier (2024), which provide typical heat rates by five-year

construction cohort.

Supply costs include start-up and ramp-up costs and possibly other variable

operation and maintenance costs. Firms may use block bids and other non-standard

bid structures to recover the start-up costs, but their precise formulation is unobserved
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in the data. Start-up and ramping-up constraints generate an hourly pattern: nighttime

and midday prices deviate downward, while morning and evening peak prices deviate

upward, relative to daily marginal costs. We capture this pattern using the difference

between a dynamic estimation that includes start-up costs and the competitive static

estimate from Reguant (2014) (Markup 3 in Fig. 8) to capture this pattern. To account

for marginal costs beyond fuel and carbon, we scale the markups in Reguant (2014)

by 1.5, increasing the mean bid-cost markup from .09 to .14.

The final fossil-fuel plant–level data set contains plant ID, nameplate capacity, fuel

source and the associated emission factor, heat rate, and markup as defined above.

Combined with the input price data, these variables yield plant-level reservation bids

as quantity–price pairs. We account for outages via the ENTSO-E Transparency

Platform, which reports unavailabilities for larger plants with capacities above 100

MW; smaller plants are assumed continuously available.

We recompute the 2023 market prices using observed demand bids and substituting

market supply with cost-based reservation prices. These counterfactual prices align

closely with the historical means and daily pattern, as shown in Fig. D.3. The main

differences are at the low end, which is unsurprising since we do not explicitly model

the bidding by typically infra-marginal hydro, nuclear, and other assets. We validate

the approach by comparing annual shares of marginal technologies from our simulation

with the reported values by CRE, the French regulator: in 2023, gas fired technologies

were marginal for 30% of hours in our simulation (30% for CRE), coal 10% (coal +

borders 13%), and oil less than 1% (< 1%) in 202318.

E Counterfactual simulations

The counterfactual simulations in the main text use observed market demand and the

marginal-cost supply construction described above. They differ from the historical

counterfactuals in three ways: (i) input prices are fixed fixed at crisis-peak levels; (ii)

nuclear availability is scaled back; and (iii) the price cap rule is varied.

Fixed input costs. The counterfactual simulations fix input prices for all days

at their levels on 25 August 2022. For reference, the settlement price for a futures

contract for electricity delivery in 2023 was €888/MWh (EEX), close to the mean

18CRE, The monitoring and functioning of wholesale electricity and natural gas markets in 2023.
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Figure D.3: Historical market prices and marginal cost based prices
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Notes. Comparison of 2023 French day-ahead spot prices: replicated market outcomes vs. counter-
factual marginal-cost-based supply. For each hour, the plot shows a box that represent the middle
50% of data, a line inside for the median, whiskers drawn at most 1.5 times the interquartile range
from the box, and outliers beyond the whiskers as individual data points.

closing price that week. On that date, input prices were €285.45/MWh for natural

gas (TTF 2023 futures), $368/t for coal, and $102.58/bbl for oil; USD/EUR rate was

.997. These input prices are used to construct plant-level bids for the fossil-fuel fleet,

as in the marginal-cost supply curve above.

Nuclear availability. The counterfactuals vary nuclear availability in 2023. For

each scenario, we rerun the hourly market clearing by scaling the historical hourly

nuclear output profile down by a fixed percentage across all hours. As a reference,

when technical issues affecting much of the French nuclear fleet emerged in 2022,

expected 2023 output was revised from 340–370 TWh to 300–330 TWh (February

2022).19 Realized nuclear output was 275 TWh in 2022 and 316 TWh in 2023.20

Fixed price cap. We run counterfactuals under two price-cap rules: a fixed, pre-

determined cap and our optimal rationing rule. Under the fixed cap, we hold the

cap constant throughout the year and vary its level; sticky demand is assumed to bid

at the cap. We evaluate caps from €3,000/MWh to €7,000/MWh in €1,000/MWh

increments. At the start of 2022, the price cap was €3,000/MWh with an automated

19EDF press releases, 11 Feb 2022, 18 May 2022, 3 Nov 2022.
20Source: ENTSO-E Transparency Platform.
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rule: the cap increases by €1,000/MWh/MWh after five weeks if any hourly price

in any market area exceeds 60% of the cap (=€1,800/MWh at the time).21 This

threshold was met on 4 April 2022, when France reached €2,987.78/MWh in hour

8–9, triggering a raise to €4,000/MWh on 11 May 2022.22 A second trigger occurred

on 17 August 2022 when Baltic prices hit the EU ceiling, lifting the cap EU-wide to

€5,000/MWh.23 The last increase was revoked before entering into force.24

Optimal price cap. The optimal rationing rule updates the price cap for each hour.

We calculate the optimal price cap directly based on the observed demand bid data by

minimizing the trade-off between utility and expenditures, ∆ABC = (1− θ)∆CEF

in Fig. 1. Table E.2 shows the summary statistics of the counterfactual market prices

and the optimal price cap.

Table E.2: Optimal price cap

Statistic N Mean St. Dev. Min Max

Market price 7,488 154.013 100.516 0.000 777.943
Price cap 7,488 572.535 211.043 202.033 2,840.000

Notes. The table reports mean, standard deviation, and the minimum and maximum values of the
counterfactual market clearing price and the optimal price cap for the N hours in the data.

Table E.3 compares the share of quantity rationed with the fixed price cap rule

and the optimal pricing rule as the nuclear supply reduces. In our central scenario

on the crisis expectations, 70% of nuclear availability and €7,000/MWh fixed price

cap, the mean rationed quantity, if rationing occurs, would have been 3,447 MWh. In

the same scenario with our optimal price cap, the mean quantity rationed would have

been 4,038 MWh.

21Regulation (EU) 2019/943 and Commission Regulation (EU) 2015/1222 (CACM).
22SDAC Communication Note, 11 Apr 2022.
23SDAC Communication Note, 23 Aug 2022.
24ACER Decision 01/2023.
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Table E.3: Quantities rationed.

Nuclear Price cap rule
availability Fixed at €7000/MWh Optimal

100% 0 (0-0) 0.034 (0.001-0.076)
90% 0.017 (0.003-0.035) 0.051 (0.004-0.126)
80% 0.032 (0.002-0.078) 0.057 (0.004-0.153)
70% 0.051 (0.005-0.123) 0.071 (0.006-0.181)
60% 0.061 (0.003-0.155) 0.093 (0.008-0.217)

Notes. Table reports mean and 5%–95% interval of ratios between the quantity rationed to quantity
demanded without rationing, calculated for each hour when rationing occurs, in different nuclear
availability scenarios. Input costs are fixed to 25 August 2022 levels.
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Proof of Proposition 3.1

Proof. We prove (i)–(iii) in order.

Step 1 (via a local variation at the clearing price). Fix opponents’ bids ŝ−i. Let p̂ be

the clearing price under ŝi. Consider a small variation of ŝi that changes only the

offered quantity at the realized clearing price, i.e., ŝεi (p) = ŝi(p) + εϕ(p) where ϕ is a

smooth bump around p = p̂ with
∫
ϕ = 1. Denote by p̂(ε) the new clearing price and

write derivatives at ε = 0.

Revenue term:

d

dε

[
p̂(ε) ŝεi (p̂(ε))

]
ε=0

= ŝi(p̂) p̂
′(0) + p̂

dŝi(p̂)

dε
.

Cost term:
d

dε
Ci

(
ŝεi (p̂(ε))

)
ε=0

= C ′
i

(
ŝi(p̂)

) dŝi(p̂)
dε

.

Transfer term (note p̂−i does not depend on ŝi):

d

dε
Ti(p̂(ε),p̂−i)

∣∣
ε=0

= −
[
D(p̂)−

∑
j ̸=i

ŝj(p̂)
]
p̂′(0) = − ŝi(p̂) p̂

′(0),

using market clearing D(p̂) = ŝi(p̂) +
∑

j ̸=i ŝj(p̂).

Summing the three derivatives, the p̂′(0)-terms cancel, yielding the Gateaux deriva-

tive
dπi

dε

∣∣∣
ε=0

=
[
p̂ − C ′

i

(
ŝi(p̂)

)] dŝi(p̂)
dε

.

Thus, at the realized price p̂, increasing quantity raises profit iff p̂ > C ′
i, and lowers

profit iff p̂ < C ′
i. Hence the unique best response at p̂ satisfies

C ′
i

(
ŝi(p̂)

)
= p̂,

independently of ŝ−i. Because opponents’ bids can make the clearing price equal to

any p in the support, the only strategy that is optimal for every possible p̂ is the

pointwise truthful schedule C ′
i(ŝi(p)) = p for all p. This proves (i).

Step 2 (Efficiency under truthful bidding). If each firm bids s∗i (p) = (C ′
i)

−1(p), then

Ŝ(p) =
∑

i(C
′
i)

−1(p) is the aggregate marginal-cost schedule. The clearing condition
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Ŝ(p̂) = D(p̂) is the first-order condition for maximizing W : set total quantity Q so

that D−1(Q) = common marginal cost = p̂, with quantities allocated across firms

by C ′
i(qi) = p̂. By strict convexity of costs and strict monotonicity of demand, the

solution is unique and efficient. This proves (ii).

Step 3 (Payoff equals marginal contribution under truthful bidding). We establish the

“area identity,” then conclude. Under truthful bids,

qj = ŝj(p̂) = (C ′
j)

−1(p̂), q−i
j = ŝj(p̂−i).

A change of variables q = D(p) gives∫ Q

Q−i

D−1(q) dq =

∫ p̂

p̂−i

p′ D′(p′) dp′ =
[
p′D(p′)

]p̂
p̂−i

−
∫ p̂

p̂−i

D(p′) dp′. (F.1)

For j ̸= i, convexity and truthfulness imply

Cj(qj)−Cj(q
−i
j ) =

∫ qj

q−i
j

C ′
j(q) dq =

∫ p̂

p̂−i

p′ dŝj(p
′) =

[
p′ŝj(p

′)
]p̂
p̂−i

−
∫ p̂

p̂−i

ŝj(p
′) dp′. (F.2)

Summing (F.2) over j ̸= i gives

∑
j ̸=i

[
Cj(qj)− Cj(q

−i
j )

]
=

[
p′
∑
j ̸=i

ŝj(p
′)
]p̂
p̂−i

−
∫ p̂

p̂−i

∑
j ̸=i

ŝj(p
′) dp′

= p̂ [D(p̂)− ŝi(p̂)]− p̂−iD(p̂−i)−
∫ p̂

p̂−i

∑
j ̸=i

ŝj(p
′) dp′. (F.3)

Subtracting (F.3) from (F.1) yields∫ Q

Q−i

D−1(q) dq −
∑
j ̸=i

[Cj(qj)− Cj(q
−i
j )] =

(
p̂D(p̂)− p̂−iD(p̂−i)

)
−
(
p̂[D(p̂)− ŝi(p̂)]− p̂−iD(p̂−i)

)
−
∫ p̂

p̂−i

D(p′) dp′ +

∫ p̂

p̂−i

∑
j ̸=i

ŝj(p
′) dp′.

The boundary terms simplify to p̂D(p̂)− p̂[D(p̂)− ŝi(p̂)] = p̂ ŝi(p̂). The integral terms
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combine as

−
∫ p̂

p̂−i

D(p′) dp′+

∫ p̂

p̂−i

∑
j ̸=i

ŝj(p
′) dp′ = −

∫ p̂

p̂−i

[
D(p′)−

∑
j ̸=i

ŝj(p
′)
]
dp′ =

∫ p̂−i

p̂

Di(p
′) dp′,

where Di(p
′) = D(p′)−

∑
j ̸=i ŝj(p

′) is the residual demand for i. Therefore,

∫ Q

Q−i

D−1(q) dq −
∑
j ̸=i

[Cj(qj)− Cj(q
−i
j )] = p̂ ŝi(p̂) +

∫ p̂−i

p̂

Di(p
′) dp′.

Subtracting Ci(qi) = Ci(ŝi(p̂)) from both sides gives

W −W−i = p̂ ŝi(p̂)− Ci(ŝi(p̂)) +

∫ p̂−i

p̂

Di(p
′) dp′ = πi,

as claimed. This proves (iii).

Proof of ex-ante optimality of price cap rule for heterogeneous welfare

weights in Section 5.

Let the demand state x be continuously distributed with full support over a compact

interval. Assume also that the price-cap rule p∗x is a continuous and differentiable

function. The planner applies this rule ex post in each state, but anticipates its ex

ante impact on responsiveness and investment. The planner’s problem is

max
{p∗x}

Ez[W
ω
z ]−

∫ c∗

0

ω(c) c dH(c), (F.4)

where

W ω
z = µz(p

∗
x)
[
(1− θ)ω̄s(θ)ux(dx) + θω̄r(θ)ux(dx(pz))

]
− Cy(Dz), (F.5)

with conditional welfare weights

ω̄r(θ) =
1

θ

∫ c∗

0

ω(c) dH(c),

ω̄s(θ) =
1

1− θ

∫ ∞

c∗
ω(c) dH(c),

and with the selection margin satisfying θ = H(c∗).
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After perturbing the optimal (differentiable) rule in a given state x, the first-order

condition can be written as

∂Ez[W
ω
z ]

∂p∗x
+
(∂W ω

z

∂θ
− ω(c∗) c∗

)
h(c∗)

∂∆

∂p∗x
= 0, (F.6)

where
∂c∗

∂p∗x
=

∂∆

∂p∗x
,

∂θ

∂p∗x
= h(c∗) · ∂c

∗

∂p∗x
.

To interpret the condition, note that (F.6) decomposes the planner’s first-order

condition into two channels (separated by the plus sign). The first measures the

deviation from the ex-post optimal price cap (5.4). The second measures the deviation

from optimal endogenous selection of responsiveness for uniform consumer weights

(4.1). That is, the FOC informs us that if heterogeneous welfare weights change

the optimal selection of responsiveness θ, the optimal price cap rule (5.4) must be

adjusted as well. Yet as we will see, such is not the case. The optimal price cap rule

is preserved.

The first term in brackets of (F.6) reflects the social benefits of adding the marginal

consumer c∗ = ∆ from sticky to responsiveness. As we have seen in (4.1), the

social value equals the private costs, denoted by the second term in brackets of (F.6).

Heterogeneous weights does not change that, as both benefits and costs receive the

same marginal consumer’s weight. Thus the term in brackets is zero, and thus the

ex-post optimal price cap rule is also preserved ex-ante.
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